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INTRODUCTION

HEAT TRANSEER processes by natural convection in a stratified
medium are Itequently observed in our natural environment
as well as in many technological applications. Stratiiication
is very imporlant in heal rejection Lo water bodies, such us
lakes, rivers and the sea, lrom thermal sources, such as the
condensers of power plants, and various industrial units. The
problem of a verticul plate at uniform temperature immersed
in a Nuid whose lemperature increases linearly with height,
has been considered by Eichhorn [1]. Chen and Eichhorn 2],
und Venkatachula und Nath [3]. They used the series solution
method, local nonsimilarity method and implicit linite
diflerence method, respectively. A similarity solution for a
natural convection How over a heated 1sothermal waull sus-
pended in a quiescent thermally stratified atmosphere has
been obtained by Kulkarni er af. [4].

In many natural convection processes lemporal viriation
in the surface temperature ol the body arises. Such Hows
are quite common in environmenlal processes and many
lechnological and indusirial  applications. In  nuclear
reaclors, lurnaces, clectronic systems, ele., the start-up and
shul-down involve consideration of natural convection [low
transients. Natural convection problems with time-depen-
dent surlace tlemperature have been solved by Sparrow und
Gregg [5] and by several others in the following years under
various assumptions. Recently transient double diflusive
nalural convection flow in a stratified medium has been
considered by Angirasa and Srinivasan [6].

Moslt ol these studies are relaled Lo a step change in the
surlace temperature or in the heal flux input. A step change
in the boundary condition may be unrealistic, with respect Lo
actual physica! circumstances. In the present paper solutions
have been obltained for vanous imposed perlurbations. con-
linuously varying with lime. over a basic steady surface
temperature.

ANALYSIS

Consider a vertical plate situated in a stratified ambient
fluid at temperature T, (x). The x-coordinale is measured
from Lhe leading edge of the plate and the y-coordinate 1s
measured normally (rom the plate to the Auid. The wall is
assumed to be of finite extent and its lemperature varies
with time. With the Boussinesq assumption. the governing
boundary layer equations Lake the form

cu o 0 ()
ax o Ay
cu cu Cu Clu
—tu—+r—=gfMT-T,)+vi— (2)
ar éx e A

(3)

The initial conditions are
i, i ) = (X,

T(x.r.0)= T(x. 7). (4)

(. 0) = (),

The boundary conditions are

x>0 aly=0 w=0=0T=T.1)
asv— v w=0.T=T,(x)=T,,+ux
where w =d7T, 'dy > 0

<0 forally w=0.T=T,(x).

(5)

To render the equations dimensionless we have used the
following trunsformations:

S=ax; AT, n=(vixUGr 'Y = 2x)Gr! 1,
WX v.r) = (64Gr ) YF(E g Rt
pU*) = (T, =T, ATy, G ™) =(T-T,)AT,.

ATII =4y T, o Gl" = .l/ﬂAT“.\";‘\':.
T, =T,,+ux, au=dT, /dx >0,
u="Cyicy, = —0picx

(6)

where ¢ > 0 implies a stably stratified ambient Auid. The
plate temperature T, can be writlen as T, ,+ (AT,)¢ consisls
of a basic steady distribution T, with a weak superimposed
lime varying distribution governed by the unsteady function
¢(r*). The introduction ol the stream lunction ¢ auto-
malically salisties the continuity equation. The governing
equations and boundary conditions. using the above Lrans-
formalions, reduce to:

F'+3FF'g=2F ¢ —F.—F'¢ 'b-+2*FF.p
A2*F 2 —2FFF' ¢+ 2*FF b+ ¢ 'G
=AU Fi—F ) (D)
¢ "G +3IPrFG —d4PriF +2*G.F + 21*F,.G’
—2*¢ P FG — "G, = 4 Pr(F'G.—G'F,). (8)

Subscripts ¢ and r* denote derivatives with respect to them
and prime denoles the derivative with respect lo 5. The
boundary conditions are given by :

E>0: p=0,*20: F=F =0,G=¢-<
l}—'l.l*?OZF’I()<G=U (9)
2<0: forally,*20: FF=0,G6=0.

The condilions at r* = 0 are given by the sieady slale equa-
lions oblained by putling¢ = 1, ¢. = F. = G. = F,. =0in
(7) and (8). The skin friction coefticient C; and local heal
transfer coeflicient Nu, (Nussell number). based on the initial
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a ambient temperature gradient. d7', (x)/dx AT, initial temperature difference, 7,,,— T,
C; local skin [riction coefficient AT,  lemperature difference, 7,,— 7, at midheight
F dimensionless stream function ol the body
F"(&, 0, 1*)  surface skin [riclion parameler Ny distances along and perpendicular to the
g gravilational acceleration surface.
G dimensionless lemperalure
G'(£.0.1*) surface heal transfer parameler Greck symbols
Gr, local Grashol number x thermal difTusivity
k thermal conductivily B bulk coefhicient of thermal expansion
L body height /NS transformed coordinates
Nu local Nussell number based on the initial v dynamic and kinematic viscosities,
__ temperature difference, T,,,— T, 4 respectively
Nu. N, average Nusselt number based on AT, p density
and L lor the stratified and unstratified cases, T shear stress at the surface
respeclively ¢ dimensionless unsteady function
Pr Prandll number "] dimensional stream [unction.
q local heat transfer rate per unil area
S stratification parameter, «L/AT,, Superscripl
rr* dimensional and dimensionless limes. ! differentiation with respect to .
repeclively
T temperalure Subscripls
T,,T,, ambienl lemperalure and its value al Z.r*  derivatives with respect (o ¢ and r*,
x = 0, respeclively respectively
T,. T, wall temperature and its value al r = 0, 1SO. i isothermal medium and initial conditions,
respectively respectively.

temperature difference can be expressed as
Cr = t/p(v/x)?
where © = u(cuj/cy), _, or
Cr = 4Gr &) " F (.0, *)pr*)
and (10)
Nu = gx/AT, = —(Gr/4)' G’ (E.0.1*)
where g = —k(¢T/Ev), _ -

RESULTS AND DISCUSSION

The nonlinear coupled partial differential equations (7)
and (8) under boundary conditions (9) and initial conditions
obtained from (7) and (8) by putting * = 0, have been
solved numerically using an implicit finite difference scheme
in combination with the quasilinearization technique [7].
Quasilineanzation is an extension ol the Newton—Raphson
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Fi1G. 1(a). Effecl of wall temperalure on local Nusselt number

for Pr=6.0. ¢,(1*) = I +ar*’, ¢py(1*) = | —er*’, £ = 0.25;

o(r*)=l+a(l—e ™), a= —0.5, ¢ = 1.0; ——, presenl

result; ———. series solution [I]; A. local nonsimilarity
result [2].

approximation for the solution of differential equations. This
method converts Lhe nonlinear two-poinl boundary value
problem inlo an iterative scheme of solution which evolves
the step-by-step integration of linear differential equations
with (wo-point boundary conditions. This method is
described in complete detail in ref. [8].

The nonlinear partial differential equations (7) and (8) are
first linearized using quasilinearization then resulling linear
purtial differential equaltions are expressed in difference form
using the central difference formula in y-direction and back-
ward difference formulae in ¢ and /*-directions. The equa-
tions are then reduced to a system of linear algebraic equa-
tions with a block Lri-diagonal structure which is solved using
Varga's algorithm [9]. The step-sizes ér. d¢ and 6r* and the
edge of boundary layer 5, have been optimized. Finally we
have taken dn = 3¢ = or* = 0.05 and 5, between 4 and 12
depending upon the values of the parameters. The results
presented here are independent of the step-sizes at least up
to Lthe fourth decimal place.
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F1G. 1(b). Influence of stratification on sleady state average
Nusselt number. Theoretical predictions (Pr = 6.0)
present result; A, local nonsimilarity result [2]: O, exper-
imental data[2] (5.5 < Pr < 7.5, 1.7x 10®* < Ra < 3.2 x 107).
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Fig. 2. Effect of wall temperature on hcat transfer and
skin [riclion paramelers for ¢(I"‘) = I+er*’, e =025 —,
—G'(E,0,1*), —-—, F"(Z,0,r%).

The heat transfer results Nu/(Nusg);-o for Pr=6.0,
showing the eflect of the straltification are compared with the
results of series solution [1] and local nonsimilarity method
[2] in Fig. I(a). In Fig. I(b) the steady stale result
Nuj/(Nuyso)s- o is compared with the results of local non-
similarity method and experimental data of rel. [2]. Here Nu
is the average Nussell number based on the temperalure
difference AT,, at midheight of the body and the subscripl
1SO refers to the isothermal medium. The ralio
Nu/(Nuyso)s_ o for various linear stratifications represenled
by the parameter S = aL/AT,, is found in the same way as
has been done in ref. [2]. To conserve space the details are
not given here. In Table | we have compared our heal transfer
results for /* = § = 0 with the results of refs. [6,10]. In all
the above mentioned comparisons our results are in close
agreemenl with the previous theoretical, as well as exper-
imental. work.

Figure 1(a) shows that al a fixed x location local Nusselt
number (Nu) based on the initial temperature diflerence
(AT,), decreases with the increase in stratification rep-
resented by the variable ¢. This figure also shows that on
decreasing the wall temperature (¢ = ¢, and ¢,) the effect of
stratification on the heat transfer becomes more pronounced.
This is due Lo increase in the temperature difference between
surface of the plate and environment which causes the
increase in temperature gradient at the wall. The case of
increasing wall temperature (¢ = ¢)) is also shown in this
figure.

The effects of Pr, stratification and variation in wall tem-
perature on the heal transfer and the skin friclion parameters
are shown in Fig. 2. It is found that the eflect of time-
dependent wall tlemperature on the heat transfer parameter
—G’'(&,0,r*)and skin [riction paramelter F(¢, 0, r*) is more
pronounced for large values of Pr. For small values of ¢ the
skin friction parameter slightly decreases with the increase in
wall temperature. This is perhaps due o the increase in the
boundary layer thickness near the leading edge. Al higher ¢
locations buoyancy {orce increases with the increase of wall

Table |. Comparison of the average Nusselt number for the
case * =5=0

Churchill and Angirasa and
Gr, Pr Chu [10] Srinivasan [6] Present
0.7x10* 15.531 16.923 16.653
7% 10° 32.175 30.623 31.047
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Pr=6.0. ¢=¢3

~GtE.0.1%)

F1G. 3. Effect of wall lemperdlure on heal transfer parameter

for ¢, (1*) = 1—er*, h.(1*) = l+a(l—c o ). a= —0.5,

(—lOdnd(/)(/*)—l+u(l—e N a=05c¢=10 —
I=02

lemperature which causes the increase in velocily and in skin
friction parameter as shown in Fig. 2.

In Flg 3 the resulls for quadratically decreasmg (p(1*) =
I—&*’, &> 0. e*’ < 1) and exponentially increasing and
decreasing (¢(1*) = [ +a(l—e "), a > 0, ¢ > 0) wall tem-
perature have been shown. The heat transfer parameter
—G’'(5,0,r*) decreases rapidly with time when
$(*)=1—er*’, £>0. For the exponential growth and
decay in wall temperature —G’(¢. 0, 1*) attains a steady state
after a certain time. To save space the behaviour of the skin
friction parameter is not shown here because 1t does not
give any new information. For higher values of stratification
reversal in velocily profiles is found. Since it has been already
predicted by previous investigators, the figures showing Lhe
velocity and temperature profiles are nol given here.

CONCLUSIONS

The results are found Lo be strongly dependent on the
variation of wall temperature and stratification. The reversal
in velocity and temperalure profiles is observed. At a par-
Licular height the local Nusselt number based on initial (em-
perature difference decreases with the increase in strati-
fication of the medium. The effect of stratificalion becomes
more pronounced on decreasing the wall temperature. With
the increase of wall temperature the skin friction parameter
near the leading edge decreases but the skin [riction par-
ameter at higher locations and heat transfer parameler
increases. These changes are more pronounced for large
values of Prandtl number.
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1. INTRODUCTION

THE HEAT Lransfer from a stretching surface 1s of interest in
polymer exlrusion processes where the object, alter passing
through a die. enters the fluid for cooling below a certain
temperalture. The rate al which such objects are cooled has
an important bearing on the properties of the final product.
In the cooling fluids the momentum boundary layer for linear
stretching of sheet U oc x was first studied by Crane [l].
whereas power law stretching U « x™ was inilially described
by Alzal and Varshney (2).

Heat transfer from a linearly stretched surlace U = x based
on the above work [[] has attracted the atiention of several
workers. The case of constant wall temperalure has already
been (he subject of study [1. 3]. Similarly, for a non-unilorm
wall temperature closed form solulion in terms of special
functions has also been reported [S]. The case of uniform
sheel velocily (zero stretching) is also well documented [7,

fluid at rest. The coordinate systems shown in Fig. |. where
coordinate x is the direction of motion of the sheet and y
is Lhe coordinale normal (o it. The « and r are velocily
components in the x and y directions, respectively. Furlner,
v 1s Lhe molecular kinematic viscosity and ¢ the Prandtl
number of the fluid. The boundary layer equations of mass,
momentum and energy for two-dimensional constant pres-
sure flow in usual notations are as follows:

e+r, =0 (n
wu +ou, = vi,, (2)
uT . +ovT, =0 "vT,.. (3)

The boundary conditions for the flow induced by strelching
sheel (issuing from the slit x = 0) moving with non-uniform
surface speed U(x) in quiescenl environment are :

8]. y=0, u=U(x), vt=0, T=T,(x) 4
The present work deals with heat transler from an arbi- yo—x, u—0 T-T,. (5)
trarily stretching surface U oc x™ for investigating the eflects
ol non-uniform surface temperature. Several closed form  Introducing the similarity variables
solulions for specific values ol m including their numerical , .
§ - . ; o Uy . Ux
solutions are presented in this technical note. ¥ =vJQ25 /), n= . &=
- \,\/(2@ vim+1)
2. EQUATIONS T=T,+(T,=7,)0(n)
Let a polymer sheet emerging out of a slit at origin (x = 0) T _ o _ 2m

be moving with non-uniform velocity U(x) in an ambient UsUn" T.=T,+Cx" fi= l+m (6)

4

4

u
Ty
= - —— U = Upx™
v Tw (x) = T+ Cx"

4

Y T

]

' T

FiG. 1. Coordinate system for the flow induced by a polymer sheel moving with non-uniform surface speed
in an ambient fluid at rest.



