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TECHNICAL NOTES 
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I N T R O D U C T I O N  

HI~AF TRANSFEI~. processes by natural convection in a stratified 
medium are frequently observed in our natura] environment 
its well as in many technological applications. Stratiiication 
is very important in heat rejection to water bodies, such as 
l:tkcs, rivers and the sea, from thermal sources, such as the 
condensers of power plants, and various industrial units. The 
problem ofa ;'ertical plate at uniform temperature immersed 
m a fluid whose temperature increases linearly with height, 
has been considered by Eichhorn [I]. Chen and Eichhorn [2], 
and Venkatachaht and Nath [3]. They used the series solution 
method, local nonsimilarity method and implicit finite 
difl'crcncc method, respectively. A similarity solution for a 
natural convection flow over a heated isothemtal wall sus- 
pended in a quiescent thermally stratified atmosphere has 
been obtained by Kulkarni et al. [4]. 

In many natural convection processes temporal variation 
in the surface temperature o f  the body arises, Such flows 
are quite common in envi,-onmental processes and many 
technological and industrial applications. In nuclear 
reactors, furnaces, electronic systems, etc., the start-up and 
shut-down involve consideration of natural convection llow 
transients. Natural convection problems with time-depen- 
dent surface temperature have been solved by Sparruw and 
Gregg [5] and by several others in the following years under 
various assumptions. Recently transient double diffusive 
natural convection flow in a stratified medium has been 
considered by Angirasa and Srinivasan [6]. 

Most of these studies are related to a step change m the 
surface temperature or in the heat flux input, A step change 
in the boundary condition may be unrealistic, with respect to 
actual physical circumstances. In the present paper solutions 
have been obtained for various imposed perturbations, con- 
tinuously varying with Lime. over a basic steady surface 
tenrperatu re. 

A N A L Y S I S  

Consider a vertical plate situated in a stratified anabient 
fluid at temperature T~(.'.-). The .,.--coordinate is measured 
from the leading edge of the plate and the v-coordinate is 
measured normally from the plate to the fluid. The wall is 
assumed to be of linite extent and its temperature varies 
with time. With the Boussinesq assumption, the governing 
boundary layer equations take the form 

Cu Cr 
P.x- + gv = 0 (I1 

~u ?u ?u ?:u 
C/ +U f~x + t ' ? v  = g[I (T-  T, )+Vcv~_ (2) 

i ' T  ~?T #T C2T 
. -  + u ~  + t ' ~ = ~ .  ~ .  ( 3 )  
C I  C X  c I' t ' _ l '  - 

The initial conditions are 

u( v, y, 0) = u,(x, )'), r(x,.v, 0) - r,I.v, v), 

Tl.v,y, 0) = T,i.v. y). (4) 

The boundary conditions are 

. , . > 0 :  a t v = 0  u = r = O .  T =  T,, t) 

z . t sv~  ~" u = O . T = T , ( . , : l = T , . + a x  

w h e r e , ' = d T ,  d ~ . - > 0  

. , :~<0: f o r a l l v  u = 0 .  T =  T , ( . r ) .  
(5) 

T o  render the equations dimensionless we have used the 
following transformations : 

- a x .  AY,,. q = ( y L ~ ) ( G r , / 4 ) ~ 4 ,  t* = (v/2xZ)Gr,  12t, 

~b( ,. y. t) = (64Or,) I 4vF( g.. q, l* )(~(/*). "] 

~]Hr*)=(T,,--T,,,),AT.. G(~_.q. t*)={T--T,) ,AT, , ,  

AT,, = 7-,,,- T, ,, Gr, = .qflAT,,.vSv 2, 

T, = T,~,+ax, a = d T , . ' d x > 0 .  

u = ? 0 ' ? v ,  r =  - # l k , ' ~ ' ,  

(6) 

where a > 0 implies a stably stratified anabient fluid. The 
plate temperature T~ can be written as T, ,,+ (A T,,)~b consists 
of a basic steady distribution T,,~ with a weak superimposed 
time varying distribution governed by the unsteady function 
t~(t*). The introduction of the stream function 0 auto- 
matic:tlly satisfies the continuity equation. The governing 
equations and boundary conditions, using the above trans- 
[brmations. reduce to : 

F'" + 3FF"4~- 2F' =ck- F;.-- F't[~ 't/~,. + 2t*F'F;.O 

+ 2t*F' Z4~,.- 2t*F,.F" c/)+ 2t*FF'O,. +4~ 'G 

= 4£,4J(F'F~-F~t:'" ) (7) 

4~ ~G"+3PrFG'-4PrS.F'+2t*G, .F+2t*F, .G'  

-2t*~b '~, .FG'-q5 'G,.=4~.Pr(F'G~-G'F~). (8) 

Subscripts ~ and t* denote derivatives with respect to them 
and prime denotes the derivative with respect to q. The 
boundary conditions are given by : 

d > 0 :  q = 0 .  t*>~0: F = F ' = O , G = ~ - - ? ~ }  

i 1---* z . t *  ~ > 0 :  F ' = 0 .  G = 0  (9 )  

~ < 0 :  forallq, t * > ~ O : F ' = O . G = O .  

The conditions at t* = 0 are given by the steady state equa- 
tions obtained by putting ~b = 1, ~b,. = F , .  = G, .  = F; .  = 0 in 
(7) and (8). The skin friction coefficient Cr and local heat 
transfer coefficient Nu, (Nusselt number), based on the initial 
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N O M E N C L A T U R E  

a ambient temperature gradient, dT ,  (x)/d.v AT. 
Cr local skin friction coefficient AT,,, 
F dimensionless stream function 
F"(~, 0, t*) surface skin friction parameter x, y 
g gravitational acceleration 
G dimensionless temperature 
G'( ~. 0. t* ) surface heat transfer parameter 
Gr, local Grashof  number  :t 
k thermal conductivity [I 
L body height q ,  

Nu local Nusselt number  based on the initial p, v 
temperature difference, 7",,0- T , ,  

Nu,  NItis 0 average Nusselt number  based on AT., p 
and L for the stratified and unstratified cases, r 
respectively 4~ 

Pr Prandtl number  q,, 
q local heal transfer rate per unit area 
S stratification parameter,  aL/AT ,  n 
t, t* dimensional and dimensionless times. 

repectively 
T temperature 
T , ,  T , ,  ambient temperature and its value at 

x = 0, respectively 
T~, 7',,,, wall temperature and its value at t = 0, 

respectively 

initial temperature difference, T~o-- T~ o 
temperature difference, T~o - T, at midheight 
of  the body 
distances along and perpendicular to the 
surface. 

Greek symbols 
thermal diffusivity 
bulk coefficient of  thermal expansion 
transformed coordinates 
dynamic and kinematic viscosities, 
respectively 
density 
shear stress at the surface 
dimensionless unsteady function 
dimensional stream function. 

Superscript 
differentiation with respect to q. 

Subscripts 
~, t* derivatives with respect to ¢ and t*, 

respectively 
ISO, i isothermal medium and initial conditions, 

respectively. 

temperature difference can be expressed as 

Cr = r /p(v /x )  2 

where "c = ldi'u/i 'y), . or 

Cr = 4(Gr,/4)~ ~F"( ~,, 0, t* )¢(t*) 

and 

Nu = qx /ATo  = - ( G r j 4 )  I ~G'(,~, 0. t*) 

where q = - k (?  T/?y),_ ,. 

(lo) 

RESULTS A N D  DISCUSSION 

The nonlinear coupled partial differential equations (7) 
and (8) under boundary conditions (9) and initial conditions 
obtained from (7) and (8) by putting t * =  0, have been 
solved numerically using an implicit finite difference scheme 
in combination with the quasilinearization technique [7]. 
Quasilinearization is an extension of the Newton Raphson 
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FIG. l (a). Effect o f  wal l  temperature on local Nusselt number 
for P r =  6.0. ~bl ( t*)=l+r . t* ' - .  dp,.(t*)= l-~,t*'-,  g = 0.25: 
~b3(t*) = 1 + a ( l - e - " " - ) ,  a = - 0 . 5 ,  c =  1 . 0 ; - - ,  present 
r e s u l t : - - - - - ,  series solution [I]; A,  local nonsimilarity 

result [2]. 

approximation for the solution ofdifferential equations. This 
method converts the nonlinear two-point boundary value 
problem into an iterative scheme of solution which evolves 
the step-by-step integration of  linear differential equations 
with two-point boundary conditions. This method is 
described in complete detail in ref. [8]. 

The nonlinear partial differential equations (7) and (8) are 
first linearized using quasilinearization then resulting linear 
partial differential equations are expressed in difference form 
using the central difference formula in tl-direction and back- 
ward difference formulae in ,~ and t*-directions. The equa- 
tions are then reduced to a system of linear algebraic equa- 
tions with a block tri-diagonal structure which is solved using 
Varga's algorithm [9]. The step-sizes &l, 3~ and 6t* and the 
edge of  boundary layer q,  have been optimized. Finally we 
have taken 6q = 3~ = fit* = 0.05 and q., between 4 and 12 
depending upon the values of  the parameters. The results 
presented here are independent of  the step-sizes at least up 
to the fourth decimal place. 
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FIG. I(b). Influence of stratification on steady state average 
Nusselt number.  Theoretical predictions ( P r =  6.0) - -  
present result; A ,  local nonsimilarity result [2]: O ,  exper- 
imentaldata  [2] (5.5 < Pr < 7.5, 1.7x 10 ~ < Ra < 3 .2x 107). 
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FIG. 3.2. Effect o f  wal l  temperature on heat transfer and 
skin f r ic t ion parameters for  ~b(t*) = I +s t * - ' ,  ~, = 0.25. - -  

-G'(~,O,t*) : - - . - - ,  F"(g,,O,t*). 
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FIG. 3. Effect o rwa [ [  temperature on heat transfer parameter 

for q$i(t*)= l--~:t*:, ~bz(/*)= l + a ( l - - e  '":), a = - - 0 . 5 ,  
c =  10and  q$~(t*)= l + u ( l - e  ' "~ ) , a=0 .5 ,  c =  1 . 0 . - -  

~ = 0 ; - -  - - , ~ = o 2 .  

The heat transfer results Nu/(Nu~so)¢_o for P r =  6.0, 
showing the effect of the stratification are compared with the 
results of series solution [l] and local nonsimilarity method 
[2] in Fig. l(a). In Fig. I(b) the steady state result 
Nu/(Nulso)s=t. is compared with the results of local non- 
similarity method and experimental data of ref. [2]. Here Nu 
is the average Nusselt number based on the temperature 
difference ATm at midheight of the body and the subscript 
ISO refers to the isothermal medium. The ratio 
Nu/(Nu~so)s~ for various linear stratifications represented 
by the parameter S = aL/ATm is found in the same way as 
has been done in ref. [2]. To conserve space the details are 
not given here. In Table 1 we have compared our heat transfer 
results for t* = S = 0 with the results of refs. [6, 10]. In all 
the above mentioned comparisons our results are in close 
agreement with the previous theoretical, as well as exper- 
imental, work. 

Figure l(a) shows that at a fixed x location local Nusselt 
number (Nu) based on the initial temperature difference 
(AT,), decreases with the increase in stratification rep- 
resented by the variable ft. This figure also shows that on 
decreasing the wall temperature ( ~ = ~b 2 and ~b3) the effect of 
stratification on the heat transfer becomes more pronounced. 
This is due to increase in the temperature difference between 
surface of the plate and environment which causes the 
increase in temperature gradient at the wall. The case of 
increasing wall temperature (~b = qSt) is also shown in this 
figure. 

The effects of Pr, stratification and variation in wall tem- 
perature on the heat transfer and the skin friction parameters 
are shown in Fig. 2. It is found that the effect of time- 
dependent wall temperature on the heat transfer parameter 
-G'(~, 0, t*) and skin friction parameter F"(g,, O, t*) is more 
pronounced for large values of Pr. For small values of ~ the 
skin friction parameter slightly decreases with the increase in 
wall temperature. This is perhaps due to the increase in the 
boundary layer thickness near the leading edge. At higher 
locations buoyancy force increases with the increase of wall 

Table 1. Comparison of the average Nusselt number for the 
case t* = s = 0 

Churchill and Angirasa and 
GrL Pr Chu [ 1 0 ]  Srinivasan [6] Present 

0.7 x 106 15.531 16.923 16_653 
7 x 106 32.175 30.623 31.047 

temperature which causes the increase in velocity and in skin 
friction parameter as shown in Fig. 2. 

In Fig. 3 the results for quadratically decreasing ( q$(t* ) = 
l - e . t  *~-, e. > 0, r,/*2 < I) and exponentially increasing and 
decreasing (q$(t*) = 1 - t - a ( I -  e-"":), a > 0, c > 0) wall tem- 
perature have been shown. The heat transfer parameter 
-G'( ,~,  0, t*) decreases rapidly with time when 
~b(t*) = I-E/*~-, e > 0. For the exponential growth and 
decay in wall temperatu re - G'( ~, 0, t* ) attains a steady state 
after a certain time. To save space the behaviour of the skin 
friction parameter is not shown here because it does not 
give any new information. For higher values of stratification 
reversal in velocity profiles is found. Since it has been already 
predicted by previous investigators, the figures showing the 
velocity and temperature profiles are not given here. 

C O N C L U S I O N S  

The results are found to be strongly dependent on the 
variation of wall temperature and stratification. The reversal 
in velocity and temperature profiles is observed. At a par- 
ticular height the local Nusselt number based on initial tem- 
perature difference decreases with the increase in strati- 
fication of the medium. The effect of stratification becomes 
more pronounced on decreasing the wall temperature. With 
the increase of wall temperature the skin friction parameter 
near the leading edge decreases but the skin friction par- 
ameter at higher locations and heat transfer parameter 
increases. These changes are more pronounced for large 
values of Prandtl number. 
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1. I N T R O D U C T I O N  

THE HEAT transfer from a stretching surface is of interest in 
polymer extrusion processes where the object, after passing 
through a die, enters the fluid for cooling below a certain 
temperature. The rate at which such objects are cooled has 
an important bearing on the properties of the final product. 
In the cooling fluids the momentum boundary layer for linear 
stretching of sheet U c z x  was first studied by Crane [1], 
whereas power law stretching U z x" was initially described 
by Afzal and Varshney [2]. 

Heat transfer from a linearly stretched surface U :c x based 
on the above work [1] has attracted the attention of several 
workers. The case of constant wall temperature has already 
been the subject of study [1.3]. Similarly, for a non-uniform 
wall temperature closed form solution in terms of special 
functions has also been reported [5]. The case of uniform 
sheet velocity (zero stretching) is also well documented [7, 
8]. 

The present work deals with heat transfer from an arbi- 
trarily stretching surface U w~ x m for investigating the effects 
of non-uniform surface temperature. Several closed form 
solutions for specific values of m including their numerical 
solutions are presented in this technical note. 

2. E Q U A T I O N S  

Let a polymer sheet emerging out of a slit at origin (.v = 0) 
be moving with non-uniform velocity U(x) in an ambient 

fluid at rest. The coordinate systems shown in Fig. 1, where 
coordinate x is the direction of motion of the sheet and I' 
is the coordinate normal to it. The u and c are velocity 
components in the x and y directions, respectively. Further, 
v is the molecular kinematic viscosity and a the Prandtl 
number of the fluid. The boundary layer equations of mass, 
momentum and energy for two-dimensional constant pres- 
sure flow in usual notations are as follows : 

u~+r ,  = 0 (I) 

uu, +cu,. = vu,, (2) 

u T , + v T ,  = a  'vT,,.. (3) 

The boundary conditions for the flow induced by stretching 
sheet (issuing from the slit x = 0) moving with non-uniform 
surface speed U(x) in quiescent environment are : 

y = 0 .  u =  U(x), c = O ,  T =  T, (x)  (4) 

.t'/6---, :~, u ~ O ,  T-- ,  T . .  (5) 

Introducing the similarity variables 

V. l '  U x  

= ,%/(2,~)/(q), '1 = ,%/(2c.')" ¢ = ,,(m~ IV 

T =  T,  + ( T , , - T . ) O ( q )  

2m 
U =  L:,,x", T~ = T~ +Cx" ,  [ } -  (6) 

1 + m 

T== 

- U(x) _- Uox m 

Tw(x) = T=o+ Cx n 

FIG. 1. Coordinate system for the flow induced by a polymer sheet moving with non-uniform surface speed 
in an ambient fluid at rest. 


